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FLYBY DESIGN USING HETEROCLINIC AND HOMOCLINIC
CONNECTIONS OF UNSTABLE RESONANT ORBITS

Rodney L. Anderson∗ and Martin W. Lo∗

Tour designs using flybys have traditionally been studied using two-body patched conic
methods. Previous work has shown that trajectories designed using these techniques and
with optimization methods follow the invariant manifolds of unstable resonant orbits as they
transition between resonances. This work is continued here by computing heteroclinic and
homoclinic trajectories associated with these unstable resonant orbits. These trajectories are
used with multiple resonances to design flybys that transition between these resonances in
the circular restricted three-body problem without the need for two-body approximations.

INTRODUCTION

Tour designs using flybys have been studied using a variety of different approaches. Historically, they

rely heavily on the use of two-body, patched-conic approximations to obtain an initial tour with the use of

numerical techniques to compute a final continuous trajectory. Techniques related to this method, such as V∞
leveraging,1 have been used to approach this problem for some time, and they continue to be developed.2, 3

One of the primary areas of interest for tour design in recent years has been for a Europa orbiter mission.

Sweetser et al.4 and Johannesen and D’Amario5 primarily combined two-body analyses with numerical

techniques to produce potential trajectories traveling to Europa, and they emphasized the importance of what

they termed the endgame problem. Various definitions exist for the endgame problem, but for these designs it

typically involves transitioning through the last several resonances using Europa down to approach or capture

around the moon. More recent work has started incorporating the use of three-body parameters, such as

Tisserand’s criterion, into the analysis.6–8 Kloster, Petropoulos, and Longuski, addressed this problem more

recently by using elements of the three-body problem in the form of Tisserand graphs.9

Alternatively, researchers have examined the problem from a dynamical systems perspective in terms of

resonance transitions in the three-body problem. Bollt and Meiss10 applied dynamical systems theory directly

within the three-body problem using the recurrence properties of chaotic dynamics to search for Earth-Moon

transfers. Schroer and Ott11 reduced the transfer time for such problems by targeting the invariant manifolds

of unstable resonant orbits. Resonance transition has also been examined from the perspective of comet

transitions by a number of researchers. Belbruno and Marsden proposed that the weak stability boundary

could explain these transitions.12 Lo and Ross then suggested that invariant manifolds might play a role

in this problem13 which was subsequently verified by Koon, Lo, Marsden, and Ross.14 In this work the

heteroclinic connections between libration orbits were used to explain the resonance transitions. Howell,

Marchand, and Lo then numerically verified this transition mechanism.15 Additional researchers have found

the computation of unstable resonant orbits in general to be useful. Lantoine, Russell, and Campagnola used

unstable resonant orbits in the three-body orbits as initial guesses for optimization algorithms to compute

resonance transitions, although their algorithm did not include computation of the invariant manifolds.16

Ross and Scheeres examined the problem in terms of resonance transition using an energy kick function to

approximate the effect of gravity flybys.17

In our previous work, we showed that impulsive trajectories originally designed using two-body tech-

niques18–20 and low-thrust trajectories designed using optimization tools21, 22 produced trajectories that closely

followed the invariant manifolds of unstable resonant orbits. These manifolds acted as pathways between res-

onances that the trajectory could follow at different energies. Our work has shown that trajectories designed
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using two-body approximations and then made continuous in the circular restricted three-body problem

(CRTBP) follow the invariant manifolds of unstable resonant orbits as they transition between resonances.23

It has been further verified by direct computation for single cases that these unstable manifolds possess ho-

moclinic23 and heteroclinic24 connections that act as trajectories that transition between resonances.

As can be seen from these descriptions, the flyby problem has been approached with a variety of different

methods. Many of these methods are based on numerical techniques or require approximations beyond those

made in the CRTBP. In essence, these types of methods are somewhat removed from the actual dynamics. The

method presented here follows our previous work and directly computes the invariant manifolds of unstable

resonant orbits for resonance transition via homoclinic or heteroclinic connections. Given the current interest

in a mission to Europa, these connections are computed for a variety of different resonances in the Jupiter-

Europa system. The feasibility of chaining multiple heteroclinic connections together to obtain continuous

trajectories is evaluated for use in mission design. It will be shown that this last step requires some small

approximations with differential correction, but the majority of the dynamics are apparent until this last

minor adjustment. In general this technique provides significant physical insight into the problem as the entire

trajectory may be designed visually or geometrically from the dynamics, completely within the CRTBP.

BACKGROUND

Circular Restricted Three-Body Problem

This study focuses on computing trajectories within the CRTBP. Szebehely25 provides a detailed descrip-

tion of this model, but a brief overview will be given here. In the CRTBP, the goal is to describe the motion

of an infinitesimal mass in a system containing two bodies, typically referred to collectively as the primaries,

rotating about their center of mass in circular orbits. If the infinitesimal mass is restricted to the plane of

motion of the two primaries, the problem is called the planar CRTBP or PCRTBP. The equations of motion

are usually formulated in a rotating frame so that the x axis is aligned with the primaries, and dimensionless

quantities are used. Using this formulation, the mass of the larger body (the primary) is defined to be 1− μ,

and the smaller body (the secondary) has mass μ. The primary is located on the x axis at x1 = −μ, and the

secondary is located on the x axis at x2 = 1− μ. The period of the rotating system is 2π, while the distance

between the primaries, the mean motion, and the gravitational constant are all one. The dimensionless time

corresponds to the angle between the x axis of the rotating frame and the x axis of the inertial frame. Using

this notation, the equations of motion for the infinitesimal mass in the rotating system may be written as

ẍ− 2ẏ = x− (1− μ)
x− x1

r13
− μ

x− x2

r23

ÿ + 2ẋ =

(
1− (1− μ)

r13
− μ

r23

)
y

z̈ = −
(
(1− μ)

r13
+

μ

r23

)
z.

(1)

Here, the distances from the infinitesimal mass to the primary and secondary are r1 and r2, respectively. An

energy-like integral of motion exists in this model called the Jacobi constant, which varies when maneuvers

are performed. It may be computed as

C = x2 + y2 +
2(1− μ)

r1
+

2μ

r2
− ẋ2 − ẏ2 − ż2. (2)

For particular Jacobi constants there are positions where the resulting velocity is imaginary. A spacecraft

cannot travel into these forbidden regions, and the curve bounding them is referred to as a zero velocity curve.

Finally, there are five equilibrium points in the problem (the Lagrange points) about which periodic orbits

exist. The existence of symmetries in the CRTBP were used when applicable to reduce the computational

time required for this analysis. Specifically, it is known that if (x, y, z, ẋ, ẏ, ż, t) is a solution in the CRTBP,

then (x,−y, z,−ẋ, ẏ,−ż,−t) is also a solution.25 In other words, if a trajectory is reflected about the x axis,

a valid trajectory is obtained by traveling along the reflected trajectory in reverse. This property was used to

compute the stable manifolds from the unstable manifolds when it was applicable in the following analysis.
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Resonant Orbits

A major focus of this analysis was the computation of resonant orbits and their invariant manifolds. In the

two-body problem, a spacecraft is periodic in the rotating frame if a spacecraft travels around the primary

p times for every q times the secondary travels around, given that p, q ∈ N. The relationship between

the resonant integers, mean motions, and periods of the spacecraft and the smaller primary may be written

respectively as
p

q
=

np

nq
=

Tq

Tp
. (3)

The mean motion of the smaller primary (nq) in the CRTBP is unity, so one criterion for the spacecraft to be

periodic in the synodic frame is that np = p/q.

As mentioned previously, the dimensionless period of the smaller primary is 2π, and the configuration

repeats itself after q revolutions of the smaller primary. So the period of the infinitesimal mass in the rotating

frame is 2πq. Note that in this paper, the form p:q is used for the resonances, which is equivalent to [Eu-

ropa period]:[spacecraft period] or [spacecraft revolutions]:[Europa revolutions]. Note that the period of the

spacecraft in the rotating frame is subsequently denoted by Psc, while Europa’s period in the inertial frame

is referred to as Pe. In the three-body problem the periods of the spacecraft and the secondary are no longer

related precisely by resonant integers, so the definition of mean motion resonance given by

pnp ≈ qnq (4)

from Murray and Dermott26 may be used. In this case, the infinitesimal mass does not quite return to the

same point after q revolutions of the secondary, and it is useful to use Poincaré sections to search for islands

corresponding to different resonances. See Anderson20 for an explanation of resonance as it is used in this

paper or Murray and Dermott26 and Szebehely25 for more detailed explanations.

Invariant Manifolds

The invariant manifolds of resonant orbits are computed for each orbit to locate and calculate the homo-

clinic and heteroclinic connections used in this analysis. Briefly, the stable (unstable) manifolds may be

thought of as the trajectories that approach the unstable periodic orbit in question as the time goes toward

infinity (negative infinity). More formally, the stable and unstable manifolds for a flow φt are

Stable Manifold W s(L): The set of points x such that φt(x) approaches L as t → ∞.

Unstable Manifold Wu(L): The set of points x such that φt(x) approaches L as t → −∞.

An offset of approximately 1 × 10−6 dimensionless units is used to globalize the invariant manifolds in the

majority of the computations made in this analysis.27 In the Jupiter-Europa system this value corresponds to

approximately 0.671 km. See Parker and Chua28 for more details on invariant manifolds.

Heteroclinic and homoclinic trajectories are an essential part of this analysis, and they are computed from

intersections of the stable and unstable manifolds. Mathematically, a heteroclinic trajectory is a point that

belongs to

W s
a:b ∩Wu

c:d (5)

where in the notation used here, a:b and c:d designate the resonant orbit used to compute the manifolds.

For this heteroclinic connection, the trajectory travels backward in time asymptotically along the unstable

manifold to one resonant orbit and asymptotically forward in time along the stable manifold to the other

resonant orbit. For a homoclinic trajectory a point is found that belongs to

W s
a:b ∩Wu

a:b, (6)

and the trajectory approaches the same unstable resonant orbit asymptotically both forward and backward in

time.
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Poincaré Sections

Poincaré maps are useful for studying complicated systems because they bring out information that would

otherwise be obscured.29 In order to compute a Poincaré map for a system in R
n, a hypersurface Σ or

surface of section in R
n−1 is placed transverse to the flow. A trajectory intersecting the surface of section is

integrated until it intersects the surface of section once again. The mapping is from the first intersection to

the next intersection and so on. The points of the mapping may then be plotted using a number of different

coordinates, although only some coordinates will result in visible structure. Given the planar CRTBP in R
4,

the surface of section is specified by fixing one of the coordinates in order to produce a surface in R
3.

In this analysis, the surface of section is specified by y = 0 along the x-axis opposite Europa (see Fig.

9(a)). The Jacobi constant is fixed for all the points in the Poincaré section, which means that the resulting

surface of section is two-dimensional. So with x defined, ẋ = 0, and y = 0. The magnitude of ẏ can then be

calculated in the planar problem from the Jacobi constant as

ẏ = ±
√

x2 + y2 +
2(1− μ)

r1
+

2μ

r2
− ẋ2 − C. (7)

As mentioned previously, resonant orbits and their invariant manifolds are of particular importance to this

analysis, and their intersections with the surface of section are computed throughout this paper. For this

analysis, only those points crossing the surface of section with a positive ẏ are plotted unless otherwise

indicated. A Runge-Kutta Fehlberg seventh-order integrator with stepsize control is used to generate the

Poincaré sections.

Once the information for each intersection has been recorded, the question arises as to which quantities

should be plotted. With y always zero it is often useful to plot x and ẋ. Other quantities found to be helpful are

the Delaunay variables14 L and ḡ. L is the square root of the semimajor axis, and ḡ is the argument of periapse

relative to the rotating x-axis. L was useful here in selecting a point with the desired initial conditions to aid

in the location of unstable resonant orbits. Using the two-body equations and an estimation of the desired

period of the orbit, a relationship between L and the resonance can be found according to

p

q
=

np

nq
=

Tq

Tp
=

√
aq

3

μG√
a3
p

μG

≈ ap
−3/2 = L−3. (8)

Here, μG is the gravitational parameter of the primary.

Differential Correction

A single shooting method was used to aid in finding the resonant orbits used in this study. The basic

algorithm, described by Howell,30 was modified for the planar case. It uses the symmetry about the x-axis in

the CRTBP mentioned earlier to search for periodic orbits. Given this symmetry, a trajectory that intersects

the x-axis twice with a velocity perpendicular to the x-axis will be periodic. Modifications were incorporated

into the algorithm to allow for the fact that the first intersection with the x-axis is not necessarily the desired

intersection for some resonant orbits. The instability of the orbits used for this study puts a lower limit on the

error of approximately 10−11 for the single shooting technique.31 A two-level, multiple-shooting differential

corrector was used to obtain the final trajectories across multiple resonances produced as a result of this

study.32, 33 Constraints were added to the differential corrector to allow the initial and final points to remain

fixed.

SUMMARY OF RESONANT ORBITS

Our previous work18–24 focused on analyzing the 3:4 and 5:6 resonances because they had been found to

be key to the endgame design for a Europa mission.5 Of course, many other unstable resonant orbits exist

that possess invariant manifolds that can potentially be used to connect the various resonances. Some of these

orbits of use in this study are summarized here.
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In Anderson23 resonant orbits were computed by starting from an initial guess derived from two-body ap-

proximations. A grid search was made in position and velocity around this initial guess with each initial guess

used as initial conditions in a single-shooting algorithm. The resulting trajectories were then sorted to select

the unstable resonant orbits based on the maximum eigenvalue of the monodromy matrix. Modifications

were made to the single-shooting algorithm to allow different numbers of intersections of the resonant orbit

in the search. The resonant orbits presented here were computed using these techniques and then selected

from the resulting database of orbits based on their period and a final visual inspection. For easy comparison

with previous work, the orbits shown here are given for the Jupiter-Europa system at an energy denoted by

Cflyby = 2.99163956830415. The Cflyby energy was selected as the energy where a flyby trajectory exists

that cycles between the 3:4 and 5:6 resonances in Anderson.23 These resonant orbits may be continued in

energy to obtain a family of orbits for a given system or in μ to obtain the resonant orbits in a different system.

The Jacobi constants computed at the Lagrange points in the Jupiter-Europa system are listed here to place

the Cflyby value in context.

CL1
= 3.00364148662088

CL2 = 3.00360779675688

CL3 = 3.00002526643555

CL4 ,CL5 = 2.99997473418954

(9)

A trajectory at the Cflyby energy is able to travel throughout the system as the Jacobi constant is just below

the point where the forbidden regions exist.

Table 1. Unstable resonant orbit characteristics at Cflyby . The maximum eigenvalue of the mon-
odromy matrix is used to compare the stability of the orbits.

Resonant Orbit Maximum Eigenvalue Psc/Pe Period (days)

2:3 125.1 3.03 10.76

7:10 846.7 10.05 35.69

5:7 852.3 7.06 25.07

3:4 1036.1 4.09 14.51

7:9 3559.0 9.11 32.36

5:6 4445.4 6.17 21.91

The resonances chosen for analysis in this study were the 2:3, 7:10, 5:7, 3:4, 7:9, and 5:6 resonances where

they are listed in order as they come closer to resonance with Europa. The selected resonant orbit families

for each resonance were computed, and the trajectories at Cflyby in the Jupiter-Europa system are plotted

in Figure 1. Note that other orbits near these resonances may exist with similar periods as was observed in

Anderson,23 but these were selected based on a combination of their locations relative to each other and their

stability characteristics. Examining the orbits, one of the most obvious features in the plots is the loops along

each orbit. These loops correspond to the periapse passages, where the orbit is actually traveling faster than

the rotating frame. This feature can be used to determine the number of periapses along the resonant orbit

over a complete revolution in the rotating frame. Additionally, it is worth noting that they do not all intersect

the surface of section with a velocity normal to the surface of section as was the case in previous studies.

This difference required modifications of the single-shooting code and a careful selection of initial guesses

to compute the orbits. A wide variety of initial conditions and orbit types were chosen, and then the resulting

periodic orbits were analyzed to select potentially useful orbits. Their specific characteristics are listed in

Table 1. The most obvious trend from the characteristics of the orbits is that the maximum eigenvalue of

the monodromy matrix increases as the resonance comes closer to 1:1. The periods, as would be expected

with the three-body influences included, are not exactly integer ratios, but they remain relatively close to the

integer value. In determining the resonance from the computed orbit, two factors may be used: the number

of periapses found when plotting the periodic orbit, and the ratio of the periods (Psc/Pe). These parameters
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(a) 2:3 (b) 7:10

(c) 5:7 (d) 3:4

(e) 7:9 (f) 5:6

Figure 1. Resonant orbits computed for each resonance at Cflyby
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x

ẋ

2:3
7:10
5:7
3:4
7:9
5:6

Figure 2. Poincaré section using x and ẋ coordinates showing the resonant orbit
intersections with the y = 0 line shown in Figure 9(a). One of the 2:3 orbit intersections
has ẏ < 0 since it is at periapse.

L =
√
a

ḡ

2:3
7:10
5:7
3:4
7:9
5:6

Figure 3. Poincaré section using L and ḡ corresponding to the resonant orbit inter-
sections in Figure 2. The resonances correspond to particular values of L in this plot.
Note that the intersections at ±π for the 2:3 resonance are the same point.
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give the number of orbits the spacecraft has traveled through in the inertial frame and the number of revolu-

tions of Europa in the inertial frame in the same time period.

While the resonant orbits are easily viewed in plots in the xy plane, when the invariant manifolds are

computed, viewing the trajectories quickly becomes very complicated with this method. A solution to this

problem used in our past work20, 22 is to plot the intersection of the orbits and their invariant manifolds with

the surface of section defined earlier. The intersections of the orbits in Figure 1 with the surface of section

are plotted using x and ẋ coordinates in Figure 2. The advantage of using these coordinates is that C =

f (x, y, ẋ, ẏ) in the planar problem so that with x and ẋ taken from the plot with y = 0, ẏ can be computed

from Equation 7. One interesting observation from this plot is that the 3:4 and 5:6 orbits analyzed in the

previous studies intersect this surface of section only once. The 2:3 orbit intersects once at periapse, so

it is the only point in the plot with a ẏ in the negative direction. Otherwise the Poincaré map is a one-

sided Poincaré map with ẏ > 0. The 7:10, 5:7, and 7:9 orbits require several revolutions in the rotating

frame to repeat as can be seen from Figure 1, while the remaining orbits repeat every revolution. The non-

perpendicular crossings of the orbits at the given surface of section produce the nonzero ẋ values seen with

some of the orbits in the Poincaré section. These points would, of course, change for different selections of

surface of sections.

The state can be easily computed from the x, ẋ plot, but it is not as clear which resonance the orbit

intersections correspond to. This issue can be remedied by plotting the intersections using L and ḡ as shown

in Figure 3. In this plot, L is a function of the semimajor axis, and three-body perturbations are at a minimum

given that the trajectory is opposite Europa for this surface of section. Indeed, this is one of the reasons for

selecting this surface of section. Using these coordinates, the resonant orbits line up vertically on the plot,

and as L is changed, the resonance changes.

HOMOCLINIC CONNECTIONS

The homoclinic connections observed here travel away from an unstable resonant orbit along the unstable

manifold of that orbit and then return to the same orbit via the stable manifold. If the homoclinic connection

is chosen from an intersection near another resonance, the trajectory undergoes a resonance transition during

this process. A homoclinic connection for the 3:4 to 5:6 orbit case was computed previously in Anderson.23

Two additional homoclinic connections are computed and shown here where the homoclinic connections are

chosen so that the trajectory travels on the unstable manifold of one resonant orbit to a point near another

resonant orbit. The trajectory then returns back to the original resonant orbit along its stable manifold. In

this manner, the trajectory travels approximately from one resonance to another and returns via flybys of the

secondary. This process first required the computation of the stable and unstable manifolds of the selected

resonant orbit along with the intersections of the manifolds with the surface of section. The appropriate

intersection was then selected from the Poincaré section.

The first orbit selected for analysis here was the 2:3 orbit. The Poincaré section computed for this orbit

including the invariant manifolds of the 2:3 orbit and the intersections of the orbits at the 2:3 resonance and

the 7:10 resonance are shown in Figure 4(a). As can be seen from the inset, the invariant manifolds of the

2:3 orbit intersect just to the left of the 7:10 resonant orbit. The points along the manifold were used to find

a more precise value for the intersection using interpolation. The complete state in phase space was then

computed from the known x, ẋ, and ẏ along with the Jacobi constant. The complete trajectory shown in

Figure 6(b) is integrated from an initial point on the 2:3 orbit to the homoclinic connection computed from

the Poincaré section to the final point back at the 2:3 orbit. The initial and final points are not at precisely the

same location because they will wind asymptotically back onto the orbit over time. It is useful though that

they both come very near the 2:3 resonant orbit with only one flyby of the secondary. This fact can be more

clearly seen by examining the individual segments of the trajectory. The trajectory segments divided up into

parts by the computed homoclinic connection point are shown in Figure 5. It can be seen that in each case

the trajectory travels one revolution around the system without a close flyby and one revolution with a close

flyby.

A similar process was performed to compute a homoclinic connection for the 7:9 orbit as well. A Poincaré
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(a) Poincaré section showing homoclinic connection. (b) Integrated trajectory computed from homoclinic connection.

Figure 4. Overview of a homoclinic connection for the 2:3 orbit.

(a) Forward Integration (b) Backward Integration

Figure 5. Segments of the homoclinic connection for the 2:3 orbit. Plots of the 7:10
and 2:3 resonant orbits are included for comparison. The trajectory is shown in blue
in each plot.

section including the invariant manifolds was computed once again (omitted here for sake of space), and the

segments of the resulting trajectory are shown in Figure 6 including the 3:4 and 7:9 resonant orbits. For this

case, a connection near the 3:4 resonance was selected. As can be seen from the plot, the trajectory travels

from the 7:9 orbit toward the 3:4 orbit and then returns to the 7:9 orbit. In this case the trajectory endpoints

were not computed to the same vicinity, but they approach the 7:9 orbit at different locations.

The homoclinic connections computed for these trajectories and others demonstrate how the resonant or-

bit’s invariant manifolds can undergo resonance transitions away from and back to particular resonances.

This is analogous to rotating the V∞ vector back and forth on successive flybys using the two-body approx-

imations. These connections are relatively common as they have been found for these orbits in addition to

others, and each orbit has multiple potential connections.
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(a) Forward Integration (b) Backward Integration

Figure 6. Segments of the homoclinic trajectory for the 7:9 orbit. Plots of the 3:4 and
7:9 resonant orbits are included for comparison. The trajectory is shown in blue in
each plot.

HETEROCLINIC CONNECTIONS

The computation of trajectories employing heteroclinic connections follows a process similar to that used

for homoclinic connections except that the stable and unstable manifolds of two or more resonant orbits are

used. The existence of a single heteroclinic connection between two resonances was demonstrated previ-

ously in Anderson and Lo,24 and this analysis explores multiple additional resonances for the existence of

new heteroclinic connections. The potential for applications to tour design is analyzed by connecting se-

quences of resonances and examining the computation of heteroclinic connections for different energies. The

resulting trajectories are then differentially corrected to examine the feasibility of this method for computing

continuous tours using flybys.

The process employed in this analysis may be briefly summarized using a spacecraft approaching Europa

from an outer resonance with an initial period greater than that of Europa’s. In this case, a sequence of

resonances may be selected, and the resonant orbits at a particular Jacobi constant may all be computed. The

corresponding stable and unstable manifolds of each orbit are also computed, and their intersections with the

selected surface of section are retained. A search may then be made for heteroclinic connections by noting

where the invariant manifolds of the selected resonant orbits intersect. In particular, the locations where

the unstable manifolds of the initial resonant orbit intersect with the stable manifolds of a resonant orbit

possessing a resonance closer to Europa are selected. In the PCRTBP, the state on the heteroclinic connection

may be computed from the intersection in the Poincaré section, and integrations forward and backward may

be made. The backward integrated state approaches the initial resonant orbit along its unstable manifold, and

the forward integrated state approaches the next resonant orbit along its stable manifold. These trajectories

will approach their respective resonant orbits asymptotically, so the trajectories are computed only until

they come close to the resonant orbits. The trajectories analyzed here typically approach the resonant orbit

closely after a single flyby of the secondary. To compute transitions across multiple resonances, several

heteroclinic connections are computed while selecting the intermediate resonant orbits so that they match. If

the trajectories are allowed to wind asymptotically onto their respective orbits, the final trajectory computed

from this chain would theoretically have no required deterministic ΔV. Practically, though, the endpoints of

each heteroclinic trajectory are computed when they come close to the resonant orbit and are connected to
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the next heteroclinic trajectory with a small discontinuity. In the final step, a differential corrector is applied

to the heteroclinic chain to search for a continuous trajectory.

x

ẋ

(a) 5:7 orbit invariant manifolds

x

ẋ

(b) 3:4 orbit invariant manifolds

Figure 7. Poincaré sections for the 5:7 and 3:4 orbits shown separately at Cflyby .

x

ẋ

(a) Overview including orbits and manifolds

x

ẋ

(b) Close view around the upper 5:7 intersection

Figure 8. Poincaré section including the stable and unstable manifolds of both the 5:7
and 3:4 orbits at Cflyby .

The process described above is applied to a particular case with a detailed explanation here, and then it is

applied to several other instances to begin to explore the potential design space. For this initial case, hete-

roclinic connections traversing the 5:7, 3:4, and 5:6 resonances at Cflyby are computed and then connected.

The first step requires finding a suitable heteroclinic connection between the 5:7 and 3:4 resonant orbits. To

search for this connection, the invariant manifolds of the 5:7 and 3:4 orbits were computed and plotted as

shown in Figure 7. As can be seen from these plots, the invariant manifolds of both orbits have very similar

characteristics and travel to some of the same resonances. Indeed, if the invariant manifolds are plotted in the

same plot as given in Figure 8(a), it can be seen that the invariant manifolds almost overlap. Examining the

invariant manifolds more closely as in Figure 8(b), it is clear that the invariant manifolds are slightly offset.

However, it can be seen from the figure that the unstable manifold of the 5:7 orbit (the initial resonance)

does in fact intersect the stable manifold of the 3:4 orbit in the upper right hand corner. Although several
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(a) Heteroclinic trajectory from 5:7 to 3:4 resonance (b) Heteroclinic trajectory from 3:4 to 5:6 resonance

Figure 9. The heteroclinic trajectories between the 5:7, 3:4, and 5:6 resonances plotted separately.

(a) Resonant orbits (b) Heteroclinic trajectories plotted together

Figure 10. Heteroclinic trajectories plotted for comparison with the resonant orbits.
The intermediate point connecting the heteroclinic trajectories occurs at the surface
of section with a small discontinuity in position. The initial point on the trajectory is
at the left position on the surface of section, and the final point is the furthest to the
right in the surface of section.

heteroclinic connections exist, this connection was selected for study here. The connection already exists

near the 5:7 orbit, and it will only approach it more closely with a backward integration. The forward inte-

gration should bring the trajectory closer then to the 3:4 orbit. The complete heteroclinic connection for this

example can be seen in Figure 9(a). The backward integrated trajectory stays near the 5:7 resonance, and the
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(a) Overview (b) Near Europa

Figure 11. Differentially corrected trajectory with the endpoints constrained travel-
ing in order between the 5:7, 3:4, and 5:6 resonances.

Table 2. Europa close approach parameters computed relative to Europa. (5:7, 3:4, 5:6 case) rp and vp
are the periapse radius and velocity with respect to Europa, and Ep is the two-body energy with respect
to Europa at that point.

Time (days) rp (km) vp(m/s) Ep (km2/s2)

6.9 2754.7 2029.5 0.897

31.9 2162.4 2171.7 0.878

46.4 1628.0 2377.5 0.860

60.9 960.7 2887.5 0.837
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Figure 12. The two-body period of the trajectory in Figure 11 normalized by Europa’s
period. The vertical lines mark flybys of Europa.

forward integrated trajectory approaches the 3:4 resonance. In this case, the position at the crossing of the

particular surface of section does not change significantly, but the orbits have obviously changed shape. The

velocity orientation is also quite different. For the next case, a similar process was performed to compute a

heteroclinic connection between the 3:4 and 5:6 resonant orbits. In this case, the change in resonance is even
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clearer compared to the surface of section as the intersection starts initially on the left side of the surface of

section and ends up on the right as shown in Figure 9(b). The chain of heteroclinic connections from the 5:7

to the 3:4 resonance and from the 3:4 resonance to the 5:6 resonance are plotted together in Figure 10(b).

Comparing with the plots of the resonant orbits in Figure 10(a), it can be seen that the heteroclinic trajectories

have moved from near the shape of the 5:7 orbit to the shape of the 5:6 orbit, and the trajectory has moved in

position from left to right in the surface of section.

(a) Heteroclinic trajectory from 7:10 to 3:4 resonance (b) Heteroclinic trajectory from 3:4 to 5:6 resonance

Figure 13. The heteroclinic trajectories between the 7:10, 3:4, and 5:6 resonances plotted separately.

One of the objectives of this analysis is to evaluate the potential use of these heteroclinic connections to

hop between multiple resonances without requiring them to fully wind on to each orbit. This application

was examined here by connecting the heteroclinic connections once they had come close to the orbit as

they intersected the surface of section. The resulting trajectory, including the segments for each heteroclinic

connection, was then placed in a differential corrector, keeping the endpoints constrained in position. For this

initial case, a total of 50 patchpoints were used, which produced the trajectory shown in Figure 11. The sum of

the position differences at the patchpoints for this trajectory is 1.7 m, and the sum of the velocity differences

is 0.000041 m/s. The time of flight (TOF) for the entire trajectory is 71.9 days, and the flyby parameters are

listed in Table 2. The resonances the trajectory travels through over time may be seen by examining the plot of

the period of the trajectory over time in Figure 12. Note that the last flyby passes below the surface of Europa

(1560.7 km) for this trajectory. This fact is potentially useful if landing or impact trajectories at Europa are

desired, but if continued resonance transitions are desired, a trajectory with different characteristics would

need to be found. This will be addressed a little later in the analysis.

While this trajectory appears to be viable, an obvious question is related to whether this same technique is

useful for connecting additional resonances. This question is approached here by examining a similar case

connecting three resonances. For this case, the 5:7 resonance is replaced with the 7:10 resonance in the

previous sequence. The same process for selecting the heteroclinic connections using the Poincaré sections

was performed here, although the plots are omitted here for the sake of space. The resulting connections

are plotted separately in Figure 13 and together in Figure 14. Here, it is easier to the see the change in

resonance for the connection between the 7:10 and 3:4 resonances as the trajectory moves from left to right

in the surface of section. The overall orbit moves from very near the shape of the 7:10 resonant orbit toward

the shape of the 5:6 resonant orbit. A similar process as that used before was performed to differentially

correct the trajectory, and the resulting orbit is shown in Figure 15. The differentially corrected trajectory in
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(a) Resonant orbits (b) Heteroclinic trajectories plotted together

Figure 14. Heteroclinic trajectories plotted for comparison with the resonant orbits.
The intermediate point connecting the heteroclinic trajectories occurs at the surface
of section with a small discontinuity in position.

this case had a total position difference of approximately 3.08 m, and a velocity difference of 0.000066 m/s.

The specific characteristics of this trajectory are given in Table 3. Once again, the trajectory passes below the

surface of Europa because the same heteroclinic connection between the 3:4 and 5:6 orbits was used for this

sequence.

Table 3. Europa close approach parameters computed relative to Europa. (7:10, 3:4, 5:6 case)

Time (days) rp (km) vp(m/s) Ep (km2/s2)

17.8 2489.5 2085.2 0.888

32.4 1630.2 2376.8 0.860

46.9 1628.8 2377.0 0.860

61.4 961.5 2886.5 0.837

Table 4. Europa close approach parameters computed relative to Europa. (5:7, 3:4, 7:9, 5:6 case)

Time (days) rp (km) vp(m/s) Ep (km2/s2)

6.9 2733.9 2034.9 0.900

31.9 2144.6 2178.3 0.880

46.4 1615.4 2385.0 0.862

60.9 1328.0 2554.6 0.853

93.3 1304.1 2571.5 0.852

One possible way of avoiding this situation might involve inserting an intermediate resonant orbit between
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(a) Overview (b) Near Europa

Figure 15. Differentially corrected trajectory with the endpoints constrained travel-
ing in order between the 7:10, 3:4, and 5:6 resonances.

(a) Heteroclinic trajectory from 3:4 to 7:9 resonance (b) Heteroclinic trajectory from 7:9 to 5:6 resonance

Figure 16. The heteroclinic trajectories between the 3:4, 7:9, and 5:6 resonances plotted separately.

the 3:4 and 5:6 resonances. This possibility is examined here by looking at a sequence traversing the 5:7, 3:4,

7:9, and 5:6 resonances in that order. For this sequence, the same trajectory traveling from the 5:7 to the 3:4

resonance was used. The trajectories computed from the heteroclinic connections between the 3:4, 7:9, and

5:6 resonances are shown in Figure 16. An overview containing all the segments of the trajectory together

is given in Figure 17, and the differentially corrected version of the trajectory is shown in Figure 18. Some

more time was spent refining this trajectory using the differential corrector, and the final result contained

10 patchpoints with a total position difference of 2.3737 m and a total velocity difference of 0.000028 m/s.

Specific details of this trajectory are listed in Table 4. Unfortunately, at this energy the trajectory still travels
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Figure 17. The heteroclinic trajectories between the 5:7, 3:4, 7:9, and 5:6 resonances
plotted together.

(a) Overview (b) Near Europa

Figure 18. Differentially corrected trajectory with constrained endpoints traveling in
order between the 5:7, 3:4, 7:9, and 5:6 resonances.

underneath the surface of Europa as it transitions through the resonances.

This occurrence does not affect the validity of the theory and its potential applications in a wide variety of

situations. It simply indicates that a different energy is required to perform this resonance transition given

the constraint of flying above Europa’s surface. In each of the cases examined so far, the incursion below the

surface of Europa has occurred during the transition process from the 3:4 to the 5:6 resonance. It is interesting

to examine a case for a different Jacobi constant to determine whether the trajectory will remain above the

surface for this resonance transition. Several cases have been examined, but a useful example may be taken

from the analysis of the planar Europa orbiter in Anderson and Lo.20 For this case, a resonance transition was
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Figure 19. Poincaré section showing the manifolds for the 3:4 and 5:6 resonant orbits at Cm.

(a) Overview (b) Near Europa

Figure 20. Heteroclinic connection between the 3:4 and 5:6 resonant orbits at Cm.

known to occur for a Jacobi constant of Cm = 2.99742497175. This energy was selected and analyzed for the

resonance transition from 3:4 to 5:6 here. The orbit and invariant manifold intersection with the surface of

section for the two resonances are shown in Figure 19. It is interesting to note that the previous study showed

that the invariant manifolds of the 5:6 orbit did not travel back to the 3:4 orbit for a Jacobi constant of C =

3.00245952365. For the Cm Jacobi constant, the invariant manifolds no longer lie nearly on top of each other

as seen at Cflyby , but heteroclinic connections still do exist at this energy. A heteroclinic connection near

the 3:4 orbit was selected for further analysis here, and the resulting trajectory for this connection is shown

in Figure 20. This trajectory remains well above the surface of Europa and could be used as part of another
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heteroclinic chain of trajectories to transition between multiple resonances. Specifically, the two flybys occur

at radii of 5669.6 km and 7345.1 km, respectively. The fact that a change in the Jacobi constant can produce

such an effect indicates that selecting the proper energy is an important aspect of computing these heteroclinic

connections in the resonance transition design process.

CONCLUSIONS

For this analysis, several single homoclinic and heteroclinic trajectories traveling across resonance transi-

tions have been successfully found and computed in the CRTBP. Multiple heteroclinic connections have been

chained together and differentially corrected to form feasible trajectories going through multiple resonances

at a particular energy. The resulting trajectories required very minimal ΔV to traverse the selected resonances

at this particular energy. It was further demonstrated that an additional resonance transition could be inserted

into the sequence to successfully raise the periapse for the flyby of Europa. It was then shown that a change in

the energy could alter the characteristics of the trajectory, specifically to raise the flyby close approach above

the surface of Europa. The application of these techniques shows that they successfully provide an alterna-

tive method of visually or geometrically computing gravity flybys from the invariant manifolds of unstable

resonant orbits in the full CRTBP.

FUTURE WORK

Future work will include analysis of additional resonance transitions over different Jacobi constants. In-

terior resonances will be examined for trajectories coming from different initial conditions. Additional dif-

ferential correction techniques will be employed, especially with constraints for different mission design

parameters. It is anticipated that these trajectories will exist in the ephemeris model so additional analysis

will be performed to bring the trajectories into the full ephemeris model using differential correction. Finally,

combinations of CRTBP problems will be patched together to design complete tours using these methods.
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